SONIC: Social Networks with Influencers and Communities

Cathy Y.H. Chen
Wolfgang Karl Härdle
Yegor Klochkov

Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Analysis of networks

\checkmark Social network produces high-dimensional time series

- Daily sentiment as quantification of one's opinion
- Missing observations
\square Adjacency matrix must be estimated
\square Problem: network size is immense
\square Smart data analytics based on StockTwits

Motivation and Contribution

StockTwits sentiment

Figure 1: https://www.stocktwits.com message examples

Sentiment weight: $t f \cdot i d f$ scheme the brown

For each term t,

$$
S W(t)=\frac{t f \cdot i d f_{\text {pos }}(t)-t f \cdot i d f_{\text {neg }}(t)}{t f \cdot i d f_{\text {pos }}(t)+t f \cdot i d f_{\text {neg }}(t)}
$$

where

$$
\begin{aligned}
& t f \cdot i d f_{\text {pos }}(t)=\text { freq }_{\text {pos }}(t) \cdot \log \frac{\text { positive messages }}{\text { positive occurences of } t} \\
& t f \cdot i d f_{\text {neg }}(t)=f r e q_{\text {neg }}(t) \cdot \log \frac{\text { negative messages }}{\text { negative occurences of } t}
\end{aligned}
$$

Crypto-specific terms

Term	Sentiment weight
	0.90
hodl	-0.91
hodl !	-0.98
hackers	0.32
miner	0.64
tulip mania	-0.83
bitcoin	0.62
scam	-0.94
$f * *$ ing scam	-0.73

©AAPL

Figure 2: SWs constructed from @AAPL messages

@BTC

Figure 3: SWs constructed from @BTC messages

Modeling opinion networks

\square Sentiment weights (SW) for N users during T days

$$
\begin{aligned}
Z_{i t} & =\text { average of SWs for user } i \text { during day } t \\
Z_{t} & \in \mathbb{R}^{N}
\end{aligned}
$$

\square Missing observations

$$
Z_{i t}=\delta_{i t} Y_{i t}, \quad \text { i.i.d. } \delta_{i t} \sim \operatorname{Bernoulli}\left(p_{i}\right)
$$

where $Y_{i t}$ is the opinion, $Z_{i t}$ - expressed opinion

Modeling opinion networks

\square Network interactions through VAR

$$
\begin{aligned}
& Y_{t}=\Theta Y_{t-1}+W_{t}, \quad \mathrm{E}\left[W_{t} \mid \mathcal{F}_{t-1}\right]=0, \\
& \Theta \in \mathbb{R}^{N \times N}
\end{aligned}
$$

- Unknown adjacency matrix
- Curse of dimensionality $T \lesssim N$

Rhu, X., Pan, R., Li, G., Liu, Y. and Wang, H.
Network vector autoregression
Annals of Statistics, 2017
\Theta_ij = \beta*\A_ij/sum(A_ik, k=1..N), known A!

Influencer

\square Relationships expressed by VAR parameters

$$
\Theta_{i j} \neq 0 \Rightarrow i \text { follows } j
$$

\square Influencer - followed by a significant part of network
\square The amount of influencers is much smaller than N

- motivated by real life social networks
- sparsity constraints reduce sample complexity

Research question

\square Each user is affected at most by s others

$$
\max _{i} \sum_{j} 1\left(\Theta_{i j} \neq 0\right) \leq s
$$

\square Sparsity grows up to $\|\Theta\|_{0} \leq N s$, so lasso requires

$$
\frac{(s N) \log N}{T} \ll 1
$$

$\left(\|\Theta\|_{0}=\sum_{i j} 1\left(\Theta_{i j} \neq 0\right)\right)$
\square Structural assumptions appropriate for social networks?

Outline

1. Motivation \checkmark
2. New structural approach
3. Estimation
4. Missing observations
5. Local result
6. Simulations
7. StockTwits analysis
8. Outlook

Stochastic Block Model

\square Partition of nodes into K disjoint communities

$$
C_{1} \cup \cdots \cup C_{K}=\{1, \ldots, N\}, \quad C_{i} \cap C_{j}=\emptyset
$$

\checkmark Independent edges $\mathrm{P}\left(a_{i j}=1\right)=\Omega_{i j}$ with

$$
\Omega_{i j}=B_{l_{i} j}, \quad \text { for } i \in C_{l_{i}}, j \in C_{l_{j}}
$$

(usually arbitrary diagonal elements $\Omega_{i i}$ allowed)
\square Low rank assumption: $\operatorname{Rank}(\Omega) \leq K$
\square Example for $N=5, K=2$
\square Realization for $N=20, K=3$

New structural approach

\square Few influencers: row-wise sparsity

$$
\max _{i} \sum_{j} 1\left(\Theta_{i j} \neq 0\right) \leq s
$$

\square Communities C_{1}, \ldots, C_{K} with shared dependencies

$$
\Theta_{i .}=\Theta_{i^{\prime} .}, \quad i, i^{\prime} \in C_{l}
$$

Chen, Y., Trimborn, S., Zhang, J.
Discover Regional and Size Effects in Global Bitcoin Blockchain via Sparse-Group Network AutoRegressive Modeling preprint, 2018

Influencers and communities

Clustering

\square Via user labels: $\mathcal{C}=\left(I_{1}, \ldots, I_{N}\right)$, where $I_{i} \in[K]$

$$
C_{I}=\left\{i: I_{i}=I\right\}
$$

\square Relabeling $\mathcal{C} \sim \mathcal{C}^{\prime}$ iff there is π

$$
l_{i}=\pi\left(l_{i}^{\prime}\right), \quad i=1, \ldots, N
$$

\square Equivalent distance,

$$
\begin{aligned}
d\left(\mathcal{C}, \mathcal{C}^{\prime}\right) & =\min _{\pi} \sum_{i=1}^{N} 1\left(l_{i} \neq \pi\left(l_{i}^{\prime}\right)\right) \\
& =\min _{\pi} \sum_{j=1}^{K}\left|C_{j} \backslash C_{\pi(j)}^{\prime}\right|
\end{aligned}
$$

Block structure

\checkmark Shared dependencies in each community

$$
l_{i}=l_{i^{\prime}} \Rightarrow \Theta_{i j}=\Theta_{i^{\prime} j}, \quad j=1, \ldots, N
$$

\square Example $K=3$
(up to a permutation)

Block structure 2

\square Each column of Θ is a span of
\square Factor representation

$$
\Theta=Z_{\mathcal{C}} V^{\top}, \quad V \in \mathbb{R}^{N \times K}
$$

where $Z_{\mathcal{C}}=\left[z_{C_{1}}, z_{C_{2}}, \ldots, z_{C_{K}}\right]$

Influencers and sparsity

\square In social media users are influenced by a small group of people (e.g. celebrities)

$$
\text { user } j \text { is influencer iff } \Theta_{i j} \neq 0 \text { for some } \mathrm{i}
$$

\square Induce row-wise sparsity on $\Theta=Z_{\mathcal{C}} V^{\top}$, i.e.

$$
\max _{j} \sum_{i=1}^{N} 1\left(V_{i j} \neq 0\right) \leq s
$$

\square Sparsity + clusterisation $=$ dimensionality reduction

Penalized loss function

\square Define

$$
R_{\lambda}(V ; \mathcal{C})=\frac{1}{2} \sum_{t=2}^{T}\left\|Y_{t+1}-Z_{\mathcal{C}} V^{\top} Y_{t}\right\|^{2}+\lambda\|V\|_{1,1}
$$

$\square \ell_{1}$ penalty $\|V\|_{1,1}=\sum_{i j}\left|V_{i j}\right|$ with a tuning parameter λ
\square Minimum contrast estimator

$$
\left(\hat{V}_{\lambda}, \hat{\mathcal{C}}_{\lambda}\right)=\arg \min R_{\lambda}(V ; \mathcal{C}), \quad \hat{\Theta}_{\lambda}=Z_{\hat{\mathcal{C}}_{\lambda}} \hat{V}_{\lambda}^{\top}
$$

LASSO estimator for V

\square Penalized risk minimization with a given clustering \mathcal{C}

$$
\hat{V}_{\mathcal{C}, \lambda}=\arg \min _{V} R_{\lambda}(V ; \mathcal{C})
$$

\square Convex problem for V
\square Parallelization is possible: K independent subproblems due to $Z_{\mathcal{C}}^{\top} Z_{\mathcal{C}}=I$

$$
\hat{v}_{j}=\arg \min _{v \in \mathbb{R}^{\top}} \frac{1}{2} \sum_{t=1}^{T-1}\left\{\left(z_{C_{j}}^{\top} Y_{t+1}\right)-v^{\top} Y_{t}\right\}^{2}+\lambda\|v\|_{1}
$$

Greedy procedure

Minimize the risk for clustering

$$
F_{\lambda}(\mathcal{C})=\min _{V} R_{\lambda}(V ; \mathcal{C}) \rightarrow \min _{\mathcal{C}}
$$

1. randomly initialize C_{1}, \ldots, C_{K};
2. for each $i=1, \ldots, N$ change the label of the i th user

$$
F_{\lambda}(\mathcal{C}) \rightarrow \min _{l_{i}}
$$

(i.e. $d\left(\mathcal{C}^{\text {old }}, \mathcal{C}^{\text {new }}\right) \leq 1$)
3. repeat (2) until clustering does not change;

Alternating procedure

Joint risk

$$
R_{\lambda}(V ; \mathcal{C})=\frac{1}{2} \operatorname{Tr}\left(V^{\top} \hat{\Sigma} V\right)-\operatorname{Tr}\left(V^{\top} \hat{A} Z_{\mathcal{C}}\right)+\lambda\|V\|_{1,1}
$$

1. randomly initialize $\mathcal{C}=\left(C_{1}, \ldots, C_{K}\right)$;
2. estimate $\hat{V}_{\mathcal{C}, \lambda}$ using LASSO;
3. repeat:
3.1 perform greedy procedure for

$$
-\operatorname{Tr}\left(\hat{V}^{\top} A Z_{\mathcal{C}}\right) \rightarrow \min _{\mathcal{C}}
$$

3.2 update $\hat{V}_{\mathcal{C}, \lambda}$ using the new clustering;
3.3 repeat until does not change

Missing observations

Unobserved "opinion" process

$$
Y_{t}=\Theta^{*} Y_{t-1}+W_{t}
$$

\square true parameter Θ^{*}
\square innovations W_{t} with $\mathrm{E}\left(W_{t} \mid \mathcal{F}_{t-1}\right)=0$
Observed variables

$$
Z_{i t}=\delta_{i t} Y_{i t}, \quad \delta_{i t} \sim \operatorname{Bernoulli}\left(p_{i}\right)
$$

\checkmark user i makes a post with probability p_{i} every day
\square still allows estimation of the covariance of Y

Loss decomposition

$$
\begin{aligned}
L(\Theta) & =\frac{1}{2 T} \sum_{t>1}\left\|Y_{t}-\Theta Y_{t-1}\right\|_{2}^{2} \\
& =\frac{1}{2} \operatorname{Tr}\left(\Theta \widetilde{\Sigma} \Theta^{\top}\right)-\operatorname{Tr}(\Theta \widetilde{A})+\frac{1}{2 T} \sum_{t>1}\left\|Y_{t}\right\|^{2}
\end{aligned}
$$

where

$$
\widetilde{\Sigma}=T^{-1} \sum_{t>1} Y_{t-1} Y_{t-1}^{\top}, \quad \widetilde{A}=T^{-1} \sum_{t>1} Y_{t-1} Y_{t}^{\top}
$$

Probabilities of non-zero observation

$$
\hat{p}_{i}=T^{-1} \sum_{t} 1\left(Z_{i t} \neq 0\right)
$$

Observed sample covariance

$$
\Sigma^{*}=T^{-1} \sum_{t} Z_{t} Z_{t}^{\top}, \quad A^{*}=T^{-1} \sum_{t>1} Z_{t-1} Z_{t}^{\top}
$$

Covariance estimation

$$
\begin{aligned}
& \hat{\Sigma}=\operatorname{diag}(\hat{p})^{-1} \operatorname{Diag}\left(\Sigma^{*}\right)+\operatorname{diag}(\hat{p})^{-1} \operatorname{Off}\left(\Sigma^{*}\right) \operatorname{diag}(\hat{p})^{-1} \\
& \hat{A}=\operatorname{diag}(\hat{p})^{-1} A^{*} \operatorname{diag}(\hat{p})^{-1}
\end{aligned}
$$

國 Lounici, K.
High-dimensional covariance matrix estimation with missing observations
Bernoulli, 2014

Local result

\checkmark Recall the definition

$$
d\left(\mathcal{C}, \mathcal{C}^{\prime}\right)=\sum_{j=1}^{K}\left|C_{j} \backslash C_{j}^{\prime}\right|
$$

(1 if only one label differs)
\square Greedy algorithm changes one label at each step
\square If \mathcal{C} is such that

$$
\min _{d\left(\mathcal{C}, \mathcal{C}^{\prime}\right)=1} F_{\lambda}\left(\mathcal{C}^{\prime}\right) \geq F_{\lambda}(\mathcal{C})
$$

the algorithm stops at \mathcal{C} - "locally optimal";

Conditions

$\square \Theta^{*}=Z^{*}\left[V^{*}\right]^{\top}$ with $Z^{*}=Z_{\mathcal{C}^{*}}$ and

$$
V=\left[v_{1}^{*}, \ldots, v_{K}^{*}\right], \quad\left\|v_{j}^{*}\right\|_{0} \leq s,
$$

where $\|x\|_{0}=\sum 1\left(x_{i} \neq 0\right)$;
$\square\left\|\Theta^{*}\right\|_{\infty}=\left\|V^{*}\right\|_{\infty} \leq \gamma<1$;
\square condition number of $\left[V^{*}\right]^{\top} \Sigma V^{*}$ bounded by κ_{0};
\square significant size of clusters

$$
\min _{j}\left|C_{j}^{*}\right| / \max _{j}\left|C_{j}^{*}\right| \geq \alpha \in(0,1]
$$

ERC condition

Denote exact recovery coefficient (ERC)

$$
\operatorname{ERC}(\Lambda)=1-\left\|\Sigma_{\Lambda^{c} \Lambda} \Sigma_{\Lambda, \Lambda}^{-1}\right\|_{1, \infty}
$$

where $\|A\|_{1, \infty}=\max _{i} \sum_{j}\left|A_{i j}\right|$
\square Suppose,

$$
\operatorname{ERC}\left(\Lambda_{j}\right) \geq 3 / 4
$$

for each $\Lambda_{j}=\operatorname{supp}\left(v_{j}^{*}\right)$
圊 Tropp, J.
Just relax: Convex programming methods for identifying sparse signals in noise
IEEE Transactions on Information Theory, 2006

Network size limits

We work in the regime

$$
\frac{s n^{*} \log N}{T p_{\min }^{2}} \leq c
$$

with $c>0$ not depending on N, s, K, T, δ_{i};
\square largest cluster size n^{*} within the range

$$
\frac{N}{K} \leq n^{*} \leq \frac{\alpha^{-1} N}{K}
$$

\square allows $N>T$ for sufficiently large K

Local result

Theorem
There are constants c, C such that if
\square the tuning parameter satisfies

$$
C \sqrt{\frac{\log N}{T p_{\min }^{2}}} \leq \lambda \leq c\left\{s^{-1} \vee(\sqrt{s} K)^{-1}\right\}
$$

$\square N \geq c^{\prime} \lambda^{2} s K$,
then with probability at least $1-1 / N$ there is a locally optimal $\hat{\mathcal{C}}$ such that $\hat{\Theta}_{\lambda}=Z_{\hat{\mathcal{C}}} \hat{V}_{\hat{\mathcal{C}}, \lambda}$ satisfies

$$
\left\|\hat{\Theta}_{\lambda}-\Theta^{*}\right\|_{F} \lesssim \lambda K \sqrt{s}
$$

Ideally we choose

$$
\lambda^{*} \sim \sqrt{\frac{\log N}{T p_{\min }^{2}}}
$$

In this case the bound is

$$
\left\|\hat{\Theta}_{\lambda^{*}}-\Theta^{*}\right\|_{F} \lesssim \sqrt{\frac{s K^{2} \log N}{T p_{\min }^{2}}}
$$

Simulations

$\square N=100, T=100$
\square Construct Θ^{*} such that

- $K=2 . .30$ with C_{j} having equal (± 1) sizes;
- for each $j=1, \ldots, K$

$$
\operatorname{supp}\left(v_{j}^{*}\right)=1 ;
$$

- $\left\|\Theta^{*}\right\|_{o p}=0.5$
\square Simulate

$$
Y_{t}=\sum_{k \geq 0}\left[\Theta^{*}\right]^{k} W_{t-k}, \quad W_{t} \sim N\left(0, I_{N}\right)
$$

Figure 4: Normalized error $E\left\|\hat{\Theta}_{\lambda}-\Theta^{*}\right\|_{F} /\left\|\Theta^{*}\right\|_{F}$ against λ

Figure 5: Cluster difference for optimal λ against $K=2, \ldots, 30$

Choice of λ

Figure 6: Optimal λ for $K=2, \ldots, 30$
\square Best choice appears to be

$$
\lambda^{*} \approx \sigma \sqrt{\frac{\log N}{T p_{\min }^{2}}}
$$

\square In case of unknown σ take

$$
\hat{\sigma}=\lambda_{K+1}(\hat{\Sigma}) ;
$$

Experiment with StockTwits

\square Preprocessing

- pick users with $\hat{p}_{i} \geq 0.5$ (small p_{i} produce too much error)
- persistence: covariance estimator requires stationarity of $\left(\delta_{i t}\right)$
- result: 46 users \& 72 days
\square Estimation
- 100 iterations with 100 initializations

@AAPL

Figure 7: Estimated Θ for AAPL daily sentiment
Q Opinion_Networks_in_Social_Media

©AAPL

OptionsPlayers
Steve/OptionsDayTrader77
Follow:

About
Founder/CEO of OptionsPlayers.com. The \#1 Options Trading Community with live chat, training forums, and trading systems. I alert my plays (open/close) livel Check us out All my posts are MY opinion. Do your own DD when trading.

EquityTom

EquityTom
Follow

About

Trading stocks that setup at / near important levels. Provide Price Action Analysis on chart
review.
9 USA
E] http://bit.ly/ProfitActionRoom
Al. Equities, Options, Technical, Day Trader, Member since March 9th 2018 Professional

$1.1 \mathbf{k}$	3	$\mathbf{3} .4 \mathrm{k}$	0	22
Ideas	Following	Followers	Liked	Watchlist

©BTC

Figure 8: Estimated Θ for BTC daily sentiment
Q Opinion_Networks_in_Social_Media

@BTC

R Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P. Measuring User Influence in Twitter: The Million Follower Fallacy 4th AAAI conference on weblogs and social media, 2010

Outlook

\square Network autoregression for social media
\square Application to StockTwits sentiment

- identify clusters and influencers
\square How to verify our model?
- follower/followee relationship unavailable in StockTwits
- analysis of cluster stability

Literature

R Zhu, X., Pan, R., Li, G., Liu, Y. and Wang, H.
Network vector autoregression
Annals of Statistics, 2017
囯 Chernozhukov, V., Härdle, W.K., Huang, C., Wang, W. LASSO-driven Inference in Time and Space preprint, 2018
國 Chen, C.Y.H, Härdle, W, Okhrin, Y.
Tail event driven networks of SIFIs
Journal of Econometrics, 2019
DOI: 10.1016/j.jeconom.2018.09.016

©AAPL

\square Sample period: 2017/05/22 to 2019/01/27 (~ 600 days)
\square 449,761 messages from 26,521 users

- 29.6% bullish / 10.7% bearish / 59.7% unlabelled
- training dataset 99,985 positive / 36,100 negative
\square Lexicon from @AAPL messages
- 543 positive terms
- 786 negative terms

䍰 Zhu，X．，Wang，W．，Wang，H．and Härdle，W．K．
Network quantile autoregression Journal of Econometrics， 2019
戋 Chernozhukov，V．，Härdle，W．K．，Huang，C．，Wang，W． LASSO－driven Inference in Time and Space Ann．Stat．，to appear
圊 Chen，C．H．－Y．，Härdle，W．K．，Liu，K． Financial Risk Meter Empirical Economics，to appear

Chen，Y．，Trimborn，S．，Zhang，J．
Discover Regional and Size Effects in Global Bitcoin Blockchain via Sparse－Group Network AutoRegressive Modeling preprint， 2018
subgaussian innovations

$$
\left\|\left\langle u, W_{t}\right\rangle\right\|_{\psi_{2}} \lesssim\left\|\left\langle u, W_{t}\right\rangle\right\|_{L_{2}}
$$

where

$$
\begin{aligned}
& \|X\|_{\psi_{2}}=\inf \left\{C>0: E \exp \left(|X|^{2} / C\right) \leq 2\right\} \\
& \|X\|_{L_{2}}=\mathrm{E}^{1 / 2}|X|^{2}
\end{aligned}
$$

Lemma

Suppose,
$\square W_{t}$ are subgaussian;
$\square\left\|\Theta^{*}\right\|_{o p} \leq \gamma<1$;
$\square P, Q \in \mathbb{R}^{N \times N}$ are projectors of ranks $\leq M$.
It holds with probability at least $1-e^{-u}$ for $u \geq 1$

$$
\|P(\hat{\Sigma}-\Sigma) Q\|_{o p}
$$

$$
\leq C\|\Sigma\|_{o p}\left(\sqrt{\frac{M(\log N+u)}{T p_{\min }^{2}}} \bigvee \frac{M(\log N+u) \log T}{T p_{\min }^{2}}\right),
$$

where $C=C(\gamma)$

Appendix

Lemma

Suppose,
$\square Y_{1}, \ldots, Y_{T}$ are subgaussian;
$\square\left\|\Theta^{*}\right\|_{o p} \leq \gamma<1$;
$\square P, Q \in \mathbb{R}^{N \times N}$ are projectors of ranks $\leq M$.
It holds with probability at least $1-e^{-u}$ for $u \geq 1$

$$
\|P(\hat{A}-A) Q\|_{o p}
$$

$$
\leq C\|\Sigma\|_{o p}\left(\sqrt{\frac{M(\log N+u)}{T p_{\min }^{2}}} \bigvee \frac{M(\log N+u) \log T}{T p_{\min }^{2}}\right)
$$

where $C=C(\gamma)$

Theorem (Chapter 4)
Let $X_{1}, \ldots, X_{T} \in \mathbb{R}^{d \times d}$ are independent with $\left\|\left\|X_{i}\right\|\right\|_{\psi_{1}}<\infty$. Set
$\square \sigma^{2}=\left\|\mathrm{E} \sum_{i=1}^{T} X_{i}^{2}\right\|$
$\bullet U=\left\|\max _{i \leq T}\right\| X_{i}\| \|_{\psi_{1}}$
Then for each $t \geq 1$

$$
\mathrm{P}\left(\left\|\sum_{i=1}^{N} X_{i}-\mathrm{E} X_{i}\right\| \lesssim \sigma \sqrt{t}+U t\right) \leq d e^{-t}
$$

Here $\|Y\|_{\psi_{1}}=\inf \{C>0: E \exp (|Y| / C) \leq 2\}$

How to choose number K?

\square Analyze stability of cluster estimation
\square Consider few shorter windows (say, of length $\frac{3 T}{4}$)

$$
\mathcal{I}_{1}=\left[0, \frac{3}{4} T\right], \mathcal{I}_{2}=\left[\frac{1}{20} T,\left(\frac{3}{4}+\frac{1}{20}\right) T\right], \ldots, \mathcal{I}_{6}=\left[\frac{1}{4} T, T\right]
$$

\square Compare resulting clusterings

$$
d\left(\hat{\mathcal{C}}\left(\mathcal{I}_{1}\right), \hat{\mathcal{C}}\left(\mathcal{I}_{j}\right)\right), \quad j=2, \ldots, 6
$$

where $\hat{\mathcal{C}}(\mathcal{I})$ is estimated using data from time interval \mathcal{I}

Figure 9: Cluster differences for $K=2,3,4,5,6$ for the BTC dataset

Figure 10: Cluster differences for $K=2,3,4,5,6$ for the BTC dataset

Proof sketch

\square Exact recovery $\operatorname{supp}\left(v_{j}\right)=\Lambda_{j}$ in the neighbourhood of \mathcal{C}^{*} (w.h.p.);
\square Explicit expression for $F_{\lambda}(\mathcal{C})$;
\square Quadratic deviation of deterministic part v.s. linear growth of stochastic part

R-ibi Gribonval, R., Jenatton, R., Bach, F.
Sparse and spurious: dictionary learning with noise and outliers IEEE Transactions on Information Theory, 2015

V-step

For arbitrary $\mathcal{C}=\left(C_{1}, \ldots, C_{K}\right)$ we solve for each $j=1, \ldots, K$

$$
\hat{v}_{j}=\arg \min \frac{1}{2} v^{\top} \hat{\Sigma} v-v^{\top} \hat{A} z_{j}+\lambda\|v\|_{1}
$$

where $Z_{\mathcal{C}}=\left[z_{1}, \ldots, z_{K}\right]$
Lemma
Denote, $\hat{c}=\hat{A} z_{j}$. Suppose,

$$
\left\|\hat{\Sigma}_{\Lambda_{j}^{c}, \Lambda_{j}} \hat{\Sigma}_{\Lambda_{j}, \Lambda_{j}}^{-1} \hat{C}_{\Lambda_{j}}-\hat{c}_{\Lambda_{j}^{c}}\right\|_{\infty} \leq \lambda\left(1-\left\|\hat{\Sigma}_{\Lambda_{j}^{c}, \Lambda_{j}} \hat{\Sigma}_{\Lambda_{j}, \Lambda_{j}}^{-1}\right\|_{1, \infty}\right)
$$

where $\|A\|_{1, \infty}=\max _{i} \sum_{j}\left|A_{i j}\right|$. Then, $\operatorname{supp}\left(\hat{v}_{j}\right) \subset \Lambda_{j}$.

Solution with $\operatorname{supp}\left(\hat{v}_{j}\right) \subset \Lambda_{j}$

$$
\hat{v}_{j}=\Sigma_{\Lambda_{j}, \Lambda_{j}}^{-1}\left(\hat{A}_{\Lambda_{j},}, z_{j}-\lambda g\right)
$$

with some $g \in \mathbb{R}^{\left|\Lambda_{j}\right|},\|g\|_{\infty} \leq 1$
If $\left\|\hat{v}_{j}-v_{j}^{*}\right\|_{\infty}<\min _{i \in \Lambda_{j}}\left|V_{i j}^{*}\right|$ then follows explicit form

$$
\hat{v}_{j}=\hat{\Sigma}_{\Lambda_{j}, \Lambda_{j}}^{-1}\left(\hat{A}_{\Lambda_{j}, . z_{j}}-\lambda\left(s_{j}^{*}\right)_{\Lambda_{j}}\right)
$$

where $s_{j}^{*}=\operatorname{sign}\left(v_{j}^{*}\right)$

Exact recovery yields

$$
\begin{aligned}
F_{\lambda}(\mathcal{C}) & =-\frac{1}{2} \sum_{j=1}^{K} \hat{v}_{j}^{\top} \hat{\Sigma} \hat{v}_{j} \\
& =\underbrace{-\frac{1}{2} \sum_{j=1}^{K}\left(\hat{A}_{\Lambda_{j}, z_{j}}-\lambda\left(s_{j}^{*}\right)_{\Lambda_{j}}\right)^{\top} \hat{\Sigma}_{\Lambda_{j}, \Lambda_{j}}^{-1}\left(\hat{A}_{\Lambda_{j}, z_{j}}-\lambda\left(s_{j}^{*}\right)_{\Lambda_{j}}\right)}_{=\Phi_{\lambda}(\mathcal{C})}
\end{aligned}
$$

Lemma

Let $\lambda, \bar{r}>0$ be such that

$$
C \sqrt{\frac{\log N}{T p_{\min }^{2}}} \leq \lambda \leq c s^{-1}, \quad \sqrt{\frac{n^{*} \log N}{T p_{\min }^{2}}} \bar{r}^{2} \leq c \lambda
$$

Then, with probability $\geq 1-N^{-\beta}$

$$
F_{\lambda}(\mathcal{C})=\Phi_{\lambda}(\mathcal{C}), \quad \forall \mathcal{C}:\left\|Z_{\mathcal{C}}-Z_{\mathcal{C}^{*}}\right\|_{\mathrm{F}} \leq \bar{r}
$$

Moreover,

$$
\left\|\hat{V}_{\mathcal{C}, \lambda}-V^{*}\right\|_{F} \lesssim \lambda \sqrt{K s}
$$

Estimation of clusters

Define,

$$
\hat{\mathcal{C}}=\arg \min _{\mathcal{C}: \| Z_{\mathcal{C}}-Z_{\mathcal{C}^{*} \|_{F} \leq \bar{r}}} \Phi_{\lambda}(\mathcal{C})
$$

quadratic vs. (at most) linear for $r=\left\|Z_{\mathcal{C}}-Z_{\mathcal{C}^{*}}\right\|_{F} \leq \bar{r}$

$$
\Phi_{\lambda}(\mathcal{C})-\Phi_{\lambda}\left(\mathcal{C}^{*}\right) \geq\left(c-C \sqrt{\frac{s n^{*} \log N}{T p_{\min }^{2}}}\right) r^{2}-C \lambda \sqrt{s} K r
$$

Define,

$$
\bar{\Phi}_{\lambda}(\mathcal{C})=-\frac{1}{2} \sum_{j=1}^{K}\left(A_{\Lambda_{j},}, z_{j}-\lambda\left(s_{j}^{*}\right)_{\Lambda_{j}}\right)^{\top} \Sigma_{\Lambda_{j}, \Lambda_{j}}^{-1}\left(A_{\Lambda_{j},}, z_{j}-\lambda\left(s_{j}^{*}\right)_{\Lambda_{j}}\right)
$$

when $r=\left\|Z_{\mathcal{C}}-Z_{\mathcal{C}^{*}}\right\|_{F} \leq 0.3$

$$
\bar{\Phi}_{\lambda}(\mathcal{C})-\bar{\Phi}_{\lambda}\left(\mathcal{C}^{*}\right) \geq \frac{a_{0} r^{2}}{4}\left(1-10 \alpha^{-1} r^{2}\right)-\lambda \sqrt{K s}\left\|V^{*}\right\|_{F} r
$$

With probability at least $1-N^{-\beta}$

$$
\begin{aligned}
\mid \Phi_{\lambda}(\mathcal{C})- & \bar{\Phi}_{\lambda}(\mathcal{C})-\Phi_{\lambda}\left(\mathcal{C}^{*}\right)+\bar{\Phi}_{\lambda}\left(\mathcal{C}^{*}\right) \mid \\
& \lesssim \sqrt{\frac{s K \log N}{T p_{\min }^{2}}} r+\sqrt{\frac{s n^{*} \log N}{T p_{\min }^{2}}} r^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{\lambda}(\mathcal{C})-\Phi_{\lambda}\left(\mathcal{C}^{*}\right) \geq & \bar{\Phi}_{\lambda}(\mathcal{C})-\bar{\Phi}_{\lambda}\left(\mathcal{C}^{*}\right) \\
& -\left|\Phi_{\lambda}(\mathcal{C})-\bar{\Phi}_{\lambda}(\mathcal{C})-\Phi_{\lambda}\left(\mathcal{C}^{*}\right)+\bar{\Phi}_{\lambda}\left(\mathcal{C}^{*}\right)\right| \\
\geq & \left(c-\mathcal{C} \sqrt{\frac{s n^{*} \log N}{T p_{\min }^{2}}}\right) r^{2}-\mathcal{C} \lambda \sqrt{s} K r
\end{aligned}
$$

Hence $\Phi_{\lambda}(\hat{\mathcal{C}}) \leq \Phi_{\lambda}\left(\mathcal{C}^{*}\right)$ yields

$$
r \leq \lambda \sqrt{s} K
$$

